The Vacuolar-Type H+-ATPase in Ovine Rumen Epithelium is Regulated by Metabolic Signals
نویسندگان
چکیده
In this study, the effect of metabolic inhibition (MI) by glucose substitution with 2-deoxyglucose (2-DOG) and/or application of antimycin A on ovine rumen epithelial cells (REC) vacuolar-type H(+)-ATPase (vH(+)-ATPase) activity was investigated. Using fluorescent spectroscopy, basal pH(i) of REC was measured to be 7.3 +/- 0.1 in HCO(3) (-)-free, glucose-containing NaCl medium. MI induced a strong pH(i) reduction (-0.44 +/- 0.04 pH units) with a more pronounced effect of 2-DOG compared to antimycin A (-0.30 +/- 0.03 versus -0.21 +/- 0.03 pH units). Treatment with foliomycin, a specific vH(+)-ATPase inhibitor, decreased REC pH(i) by 0.21 +/- 0.05 pH units. After MI induction, this effect was nearly abolished (-0.03 +/- 0.02 pH units). In addition, membrane-associated localization of vH(+)-ATPase B subunit disappeared. Metabolic control of vH(+)-ATPase involving regulation of its assembly state by elements of the glycolytic pathway could provide a means to adapt REC ATP consumption according to energy availability.
منابع مشابه
Transcriptomic Changes in the Rumen Epithelium of Cattle after the Induction of Acidosis
The transition from normal forage to a highly fermentable diet to achieve rapid weight gain in the cattle industry can induce ruminal acidosis. The molecular host mechanisms that occur in acidosis are largely unknown. Therefore, the histology and transcriptome profiling of rumen epithelium was investigated in normal and acidosis animals to understand the molecular mechanisms involved in the dis...
متن کاملMetagenomic Insights into the RDX-Degrading Potential of the Ovine Rumen Microbiome
The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identif...
متن کاملSaccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly i...
متن کاملVacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase.
The vacuolar H(+)-ATPase (V-ATPase) in type A kidney intercalated cells is a major contributor to acid excretion in the collecting duct. The mechanisms of V-ATPase-trafficking regulation in kidney intercalated cells have not been well-characterized. In developmentally related epididymal clear cells, we showed previously that PKA, acting downstream of soluble adenylyl cyclase (sAC), induces V-AT...
متن کاملRenal vacuolar H+-ATPase.
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010